

Journal of Public Health in Africa
https://www.publichealthinafrica.org/jphia

Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Early Access service lets users access peer-reviewed articles well before print/regular issue publication, significantly reducing the time it takes for critical findings to reach the research community.
These articles are searchable and citable by their DOI (Digital Object Identifier).
The Journal of Public Health in Africa is, therefore, E-publishing PDF files of an early version of manuscripts that undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination, and proofreading processes, which may lead to differences between this version and the final one.

The final version of the manuscript will then appear on a regular issue of the journal.
E-publishing of this PDF file has been approved by the authors.

Please cite this article as:

Chola M, Hlongwana K, Ginindza TG. Factors contributing to changes in contraceptive use among adolescent girls in Zambia: a decomposition analysis. J Public Health Afr doi:10.4081/jphia.2023.2261

Submitted: 20/07/2022
Accepted: 03/09/2022
© the Author(s), 2023
Licensee PAGEPress, Italy

[^0]
Factors contributing to changes in contraceptive use among adolescent girls in Zambia: a decomposition analysis

Mumbi Chola, ${ }^{1,2}$ Khumbulani Hlongwana, ${ }^{1,3}$ Themba G. Ginindza ${ }^{1,3}$
${ }^{1}$ Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, South Africa; ${ }^{2}$ Department of Epidemiology \& Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia; ${ }^{3}$ Cancer \& Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, South Africa

Correspondence: Mumbi Chola, Department of Epidemiology \& Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia.

Tel.: +260.968832646.
E-mail: mumbi24@gmail.com

Acknowledgments: the authors would like to thank the Demographic and Health Surveys (DHS) Program for granting permission to the datasets used in this study. Special thanks to Dr. Vesper Chisumpa for reviewing the decomposition analysis results.

Key words: factors; contraceptive use; adolescent girls; decomposition; Zambia.

Contributions: MC, conceptualised the study, designed the methodology, led the formal data analysis, and wrote the initial draft manuscript; TGG, KH, reviewed the methodology, results of the study and the manuscript; TGG, KH, supervised and approved the work. All authors approved the final version to be published.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: none.

Ethical approval and consent to participate: ethical approval (REF No BE288/18) for this study was obtained from the University of KwaZulu-Natal Biomedical Research Ethics Committee (UKZNBREC) and University of Zambia Biomedical Research Ethics Committee (UNZABREC),
reference number REF. No. 157-2019 as part of PhD research. Permission to use the data was obtained from Demographic and Health Surveys (DHS) Program.

Availability of data and material: the data used in this paper are publicly available from the Demographic and Health Surveys (DHS) Program. Data can be accessed through their website https://dhsprogram.com/data/

Abstract

Despite its documented benefits, contraceptive use among adolescents remains low, particularly in low-and middle-income countries. This study aimed to decompose the main factors contributing to the changes in contraceptive use among adolescent girls in Zambia over the period 1996 to 2014. Data on adolescent girls aged 15-19 years from Zambia Demographic and Health Survey data were analysed using multivariate decomposition analysis of change. Stata 15/MP (Stata-Corp LLC) was used for analysis, at a 95% confidence level. A p-value of 0.05 was used to determine statistical significance. The sample included 9,072 adolescent girls. Contraceptive use increased by 3% from 7.6% in 1996 to 10.6% in 2013/14. Change in modern contraceptive use among adolescents was mainly due to differences in coefficients (changes in population behaviour). Increases in age contributed to the change in contraceptive use, resulting in 2.94% and 9.33% increases for 17 - and 18 -year-olds respectively. Marriage or living with a partner contributed the largest change (44\%) while living in a rural area accounted for approximately 20%. Interventions targeting improving contraceptive use in adolescents should be responsive to the needs of various age groups, places of residence, and educational levels for maximum benefits.

Introduction

Teenage pregnancies continue to pose health and socio-economic problems for adolescents, globally. ${ }^{(1)}$ it is estimated that in developing countries, approximately 21 million girls aged 15 to 19 years get pregnant while about 12 million of them give birth, yearly. ${ }^{(1)}$ Each year, a further 777,000 girls under the age of 15 years give birth, globally. ${ }^{(1,2)}$ It is estimated that by 2035, 19.2 million adolescent girls across the world would have given birth. ${ }^{(3)}$ The extent of the problem of adolescent pregnancy is put into context by examining data from Demographic Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS) on the proportion of girls aged 20 to 24 years who had a live birth by age 15 or 18 years. The most recent global estimates available show that 19 per cent or approximately one in five women between the ages of 20 to 24 had a live birth by their 18th birthday. ${ }^{(4)}$ A systematic review on adolescent pregnancy found a pooled adolescent pregnancy prevalence of 18.8% in Africa, overall, and 19.3% for sub-Saharan Africa (SSA). ${ }^{(5)}$

Adolescent pregnancies have major health and socio-economic consequences for young mothers and their babies. The leading cause of mortality among adolescent girls aged $15-19$ years is due to complications from pregnancy and childbirth complications, and 99% of the global deaths occur in low- and middle-income countries. ${ }^{(6)}$ The risk of eclampsia, puerperal endometritis and systemic infections is higher in adolescent mothers aged 10-19 years compared to women aged 20-24
years. ${ }^{(7,8)}$ Furthermore, unsafe abortions among adolescent girls ages $15-19$ years, estimated at 3.9 million annually, contribute to maternal mortality and morbidity rates, as well as lasting health problems. ${ }^{(2)}$ Adolescent pregnancies also have repercussions for the new-born babies. Children born to adolescent mothers have increased risks of low birth weight, preterm delivery, and severe neonatal conditions. ${ }^{(7)}$

In addition to adverse health outcomes, adolescent pregnancies have economic and social consequences such as social stigma and discrimination from communities and/or families, resulting in them having to leave their family home, consequently increasing their vulnerability to violence and abuse, and potentially facing increased poverty and economic hardships. ${ }^{(9)}$ Early and unintended pregnancy also affects adolescent girls' schooling, disrupting their future economic opportunities, causing them to miss out on the overall benefits of education that contribute to their physical and emotional growth, including increases in knowledge and life skills, higher self-confidence and better outcomes in life. ${ }^{(9,10)}$ Furthermore, adolescent childbearing is associated with lower educational attainment, and it can perpetuate a cycle of poverty from one generation to the next. ${ }^{(11)}$

Contraceptive use remains one of the major interventions towards prevention of pregnancy among adolescents. Guidelines have been published by the World Health Organisation (WHO) on Preventing Early Pregnancy and Poor Reproductive Outcomes, which emphasise the increased use of contraception by adolescents who are at risk of unplanned pregnancy. ${ }^{(12)}$ However, contraceptive use among adolescents remains low, particularly in low-income countries (LICs). ${ }^{(13-17)}$ Studies have shown that in LICs, contraceptive prevalence rate (CPR) among adolescent females aged 15-19 years is low at 21% for all methods (modern and traditional). ${ }^{(15,18,19)}$ This is despite the documented benefits of using contraceptives, which include the freedom to decide the number of children to have and child spacing, improved health outcomes, such lower maternal and infant mortality ${ }^{(20,21)}$ and improvements educational and economic outcomes. ${ }^{(22,23)}$

Despite contraceptive use being relatively low in most sub-Saharan countries, it has been increasing over the years. ${ }^{(24)}$ Various factors have been associated with contraceptive use among women, including adolescents. Among these are age, ${ }^{(17,25,26)}$ education, ${ }^{(14,26)}$ wealth, ${ }^{(14,25)}$ residence, ${ }^{(17,25)}$ marital status, ${ }^{(13,17)}$ work status, knowledge of ovulatory cycle, visit of health facility. ${ }^{(13,27)}$ The contribution of these factors to the changes in contraceptive use among adolescent girls varies from country to county. Decomposition analysis conducted in Tanzania found that difference in coefficients contributed more (87.5%) to increase in modern contraceptive prevalence rate (mCPR) than differences in women's characteristics (12.5%). Women's characteristics included partner's education levels, recent sexual activity and being visited by a family planning worker, while most
increase in modern contraceptive use was attributed to rural population (44.1\%) and women who experienced a termination of pregnancy $(7.1 \%) .{ }^{(24)}$ It has also been found that increases in the use of modern contraceptives are what drive increases in the rate of contraceptive use and not changes in women's parity composition. ${ }^{(28)}$ A study in Ethiopia found that 34% of the overall change in modern contraceptive use resulted from difference in women's characteristics (age, educational status, religion, couple concordance on family size, and fertility preference), while two-thirds of the increase was due to difference in coefficients (mainly changes in contraceptive use behaviour among the rural population (33\%) and among Orthodox Christians (16\%) and Protestants (4\%). ${ }^{(17)}$

In Zambia, contraceptive prevalence rate among adolescents remains low, although it has increased slightly from 1996 to 2013/14. ${ }^{(26)}$ With factors that are associated with contraceptive use in adolescent girls aged 15-19 years having been established, it is important to understand the contribution to the observed change in the contraceptive prevalence rate. Therefore, this study is aimed at investigating the main factors contributing to the changes in contraceptive use among adolescent girls in Zambia over the period 1996 to 2014.

Materials and Methods

Cross-sectional data from four (4) Zambia Demographic and Health Surveys, spanning from 1996 to 2014, was analysed. The Zambia Demographic and Health Survey (ZDHS) is a nationally representative sample survey of Zambian households that provides country level information on various indicators, including fertility levels and trends, mortality, contraceptive use and family planning methods, as well maternal and child health, including HIV and AIDS. The ZDHS employs two stage stratified sampling and targets women and men aged, 15-49 and 15-59 respectively. The sampling frame used for the ZDHS is typically adopted from the Census of Population and Housing of the Republic of Zambia (CPH) from the Central Statistical Office. ${ }^{(29)}$

Using a two-stage stratified cluster sample design, a representative sample of households was drawn for all the surveys, with the first stage being the selection of Enumeration Areas (EAs) (or clusters) and the second stage the selection of households. The sample was stratified in two stages from the CPH frames (1990, 2000 and 2010). Dividing each province into rural and urban ensured stratification was achieved. In the previous studies, provinces were stratified into 18 strata and 20 strata in the 2013/14 survey. In each stratum, the samples were selected independently in every stratum through a two-stage selection process. At all lower levels, stratification and proportional allocation were attained through sorting the sampling frame by geographical/administrative order and using a probability proportional to size selection process in the first stage. All females and males aged, 15-

49 and 15-59 respectively, who lived permanently in the sampled housholds or were visitors present in the household on the night preceeding the survey, were eligible to participate in the survey. ${ }^{(29)}$ Data analysis focused on adolescent girls aged 15-19 years. All adolescents who answered questions on the current contraceptive method were included in the analysis. Current contraception method, which was the dependent variable, was recoded into a binary outcome, those currently using and those not using any contraceptive method. Explanatory variables included in the analysis were age, residence, province, the highest level of education, and marital status. Since the ZDHS involved more than one level, variables on cluster and household were also included. Data from the four ZDHS surveys were combined by appending the data sets from 1996, 2001/2 and 2007 to the 2013/14 ZDHS. Descriptive analysis was done, and results were presented using proportions. Where appropriate, Chisquare and Fischer's exact tests were used to test for association between the outcome and explanatory variables.

Multivariate decomposition analysis of change was used to determine the major factors contributing to the difference in the contraceptive use among adolescents over the 1996 to 2014 period. Multivariate decomposition has been used extensively in quantifying the contributions of observed variables to group differences with multivariate regression models. ${ }^{(30-32)}$ In this study, the multivariable decomposition method proposed by Powers, Yoshioka and Yun ${ }^{(30)}$ was used to analyse the data. It was further used to determine what the source of difference was in terms of the composition (Characteristics) of the adolescent girls' population and the difference in the effect of characteristics (Coefficients) between the surveys over time. The analysis with done using logistic regression models, adjusting for the sampling weight, based on data from 1996 and 2014 ZDHS. The analysis was focused on how the contraceptive prevalence rate changes due to differences in adolescent girls' characteristics and how these factors lead to the differences across the DHS surveys conducted between the reference period. This difference can be attributed to compositional changes between surveys (i.e., differences in characteristics) and to changes in effects of the selected explanatory variables (i.e., differences in the coefficients due to changes in population behaviour). Therefore, the observed difference in modern contraceptive use among adolescent girls between different surveys is additively decomposed into a characteristics (or endowments) component and a coefficient (or effects of characteristics) component. ${ }^{(33)}$ Stata 15/MP (Stata-Corp LLC) was used to perform the analysis, at a 95% confidence level with a p-value of 0.05 are what determined significance. The SVY STATA command was employed to control the clustering effect of complex sampling (stratification and multistage sampling procedures).

Ethical considerations

Ethical approval (REF No BE288/18) for this study was obtained from the University of KwaZuluNatal Biomedical Research Ethics Committee (UKZNBREC) and University of Zambia Biomedical Research Ethics Committee (UNZABREC), reference number REF. No. 157-2019 as part of PhD research. Permission to use the data was obtained from Demographic and Health Surveys (DHS) Program.

Results

Descriptive results

Analysis was done across four ZDHS surveys and included a total of 9072 adolescent girls. The majority (42%) were from the 2013/14 ZDHS while 18% were from the 2007 survey, with 20% from the $2001 / 2$ survey and 20% from the 1996 survey. Results in Table 1 reflect, across all the survey years, the distribution of adolescent girls who were included in the analysis.

Contraceptive use among adolescent girls aged 15-19 years, over the period 1996 to 2014, was 9.8\%, ranging from 7.6% in 1996 to 10.6% in 2013/14 (Table 1). Across all survey years, in each of the survey years, the age distribution ranged from 18.1 to 23.2%. Regarding education level, in the earlier survey years, the majority of adolescent girls had primary education while in the latter years (2007 and 2013/14), majority of adolescent girls had secondary education or higher. In terms of marital status, most of the adolescent girls had never been married. However, over the survey years, the proportion of adolescent girls who reported being married reduced from 25.3% to 15.5% (Table 1). Knowledge of modern contraceptives increased from 87.5\% in 1996 to 95.6% in 2013/14.

Decomposition analysis results

Table 2 below shows results from the decomposition analysis of contraceptive use among adolescent girls over the period 1996 to 2014. There was a total of 24,432 adolescents who were included in the analysis. This decomposition, however, focuses on the year 1996 and 2014 as the key years at the beginning and end of the reference period.

Results from the decomposition analysis showed that change in modern contraceptive use among adolescents was mainly due to difference in coefficients (changes in population behaviour). Increase in age contributed to the change in contraceptive use over the reference period, 2.94% and 9.33% for 17 - and 18 -year-olds respectively. Being married or living with a partner contributed the largest change with regard to marital status. This contributed about 44% to the observed change in
contraceptive use among adolescents, while living in a rural area accounted for approximately 20% of the change.

Compositional changes also accounted for some changes in contraceptive use among adolescents over the years. Changes in composition relating to Education, particularly regarding secondary education and higher, accounted for 290%. With regard to residence, rural areas contributed about 13% of the change while changes in age composition among older adolescents, 18 and 19-year-olds, accounted for approximately 7 and 2 percent, respectively.

Discussion

Over the period 1996 to 2014, contraceptive use among adolescents in Zambia increased by 3%. Decomposition analysis showed that the change was as a result of population behaviour and compositional changes in the age group $15-19$ years over this period. The behaviour of adolescent girls, as they get older, as well as compositional changes in this age group contributed to the increase in population change over the reference period. The effect of women's characteristics, such as age and educational status, are compares well to other findings of similar studies. ${ }^{(17)}$

Bearing in mind the association of education with contraceptive use, ${ }^{(14,26)}$ the increase in the proportion of adolescent girls who are in school contributed to the change in contraceptive use. The increase in the composition of adolescent girls' attainment of secondary education or higher showed a significant effect on modern contraceptive use, similar to the findings of the study by Worku et al. ${ }^{(33)}$ This can be attributed to deliberate government policies to keep adolescent girls in schools. Various Non-governmental organisations also have projects aimed at ensuring adolescent girls remain in school. Free education in government schools may have also contributed to increase in adolescent girls who are in school.

Decomposition analysis also showed that residence had an effect on modern contraceptive use among adolescent girls. About 14 percent of the change was due to compositional changes in rural areas and about 20% due to changes in the behaviour among rural adolescent girls. This is similar to findings by Worku et al. ${ }^{(33)}$ With increase in the proportion of adolescent girls in rural areas who attain higher levels of education, this could have also contributed to increase in contraceptive use in rural areas. Furthermore, deliberate government policies such as Comprehensive Sexuality Education for both in and out of school adolescents and improving access to contraceptives ${ }^{(34)}$ may have contributed to this. About 45% of the increase in modern contraceptive use among Zambian adolescent women was observed over the period 1996 to 2014, and this was attributable to changes in modern contraceptive use behaviour among married adolescents. Modern contraceptive use has increased over the reference
period from 13.07% in 1996 to 43.76 in 2013/14. This can be attributed to adolescents who reported being married or living together with a man, being more likely to use contraceptives compared to those who had never married. ${ }^{(13,35,36)}$ This could be attributed to married adolescents receiving partner support in using contraceptives, ${ }^{(37)}$ them being more likely to afford contraceptives due to financial support from the partner, ${ }^{(13)}$ or them being likely to practice family planning and take measures to prevent pregnancy compared to the unmarried as a result of regular exposure to sexual intercourse and the risk of unplanned pregnancy. ${ }^{(26)}$

Strengths and limitations

The study did have some strengths and limitations, especially given that it was based on DHS data from four surveys. Firstly, some variables included in the analysis may have either changed or been added over time. Secondly, DHS data is based on self-reporting, and therefore prone to social desirability bias. Thirdly, given the cross-sectional nature of DHS, causal inferences about the relationships observed in the data cannot be made. However, despite these limitations, the study highlights the results from decomposition analysis, which showed that the change in modern contraceptive use was as a result of population behaviour and compositional changes in the age group 15 - 19 years between 1996 and 2014. This has vital implications for programs aimed at improving increasing contraceptive use among adolescents. Furthermore, the study used nationally representative data of adolescent girls in Zambia. This ensures that the findings generated from this study can be generalized to the study population.

Conclusions

Modern contraceptive use among adolescent girls in Zambia has remained low over time, with only a modest increase of 3% in the period from 199610 2014. The results from the decomposition analysis showed that the change was as a result of population behaviour and compositional changes in the age group 15-19 years over this period. Changes in characteristics (compositional changes) were mostly in education with moderate changes in age and residence while changes in coefficients (population behaviour) were mainly in age, marriage, and residence. These findings suggest that interventions aimed at influencing population behaviour should be responsive to the needs of various age groups, places of residence, and educational levels in order to yield maximum benefits in improving contraceptive use among adolescent girls. The government has introduced free education, but it is important to keep the girls in school. Therefore, programmes aimed ensuring girls stay in school longer should be promoted. Comprehensive sexuality education also needs to be strengthened
especially for out-of-school girls. It is best suited to provide accurate information about contraceptives to adolescents. Furthermore, health promotion and education activities such as provision of contraceptives also need to be enhanced and strengthened. Improving access to contraceptives may contribute positively to their use.

References

1. UNFPA. Girlhood not motherhood: preventing adolescent pregnancy. New York: United Nations Population Fund: UNFPA; 2015.
2. Darroch JE, Woog V, Bankole A, Ashford LS. Adding it up: costs and benefits of meeting contraceptive needs of adolescents. [Internet]. New York; 2016. Available from: https://www.guttmacher.org/sites/default/files/report_pdf/adding-it-up-adolescents-report.pdf
3. UNFPA. Universal Access to Reproductive Health. Progress and Challenges. [Internet]. 2016 [cited 2018 Jan 18]. Available from: https://www.unfpa.org/sites/default/files/pubpdf/UNFPA_Reproductive_Paper_20160120_online.pdf
4. UNFPA. Adolescent pregnancy: A review of the evidence. New York; 2013.
5. Kassa GM, Arowojolu AO, Odukogbe AA, Yalew AW. Prevalence and determinants of adolescent pregnancy in Africa: a systematic review and Meta-analysis. Reprod Health [Internet]. 2018;15(1):195. Available from: https://doi.org/10.1186/s12978-018-0640-2
6. Neal S, Matthews Z, Frost M, Fogstad H, Camacho A V, Laski L. Childbearing in adolescents aged 12-15 years in low resource countries: a neglected issue. New estimates from demographic and household surveys in 42 countries. Acta Obstet Gynecol Scand. 2012 Sep;91(9):1114-8.
7. WHO. Global Health Estimates 2015: Death by Cause, Age, Sex, Country and Region, 20002015. Geneva; 2016.
8. Ganchimeg T, Ota E, Morisaki N, Laopaiboon M, Lumbiganon P, Zhang J, et al. Pregnancy and childbirth outcomes among adolescent mothers: a World Health Organization multicountry study. BJOG [Internet]. 2014 Mar 1 [cited 2018 Jan 18];121 Suppl(s1):40-8. Available from: http://doi.wiley.com/10.1111/1471-0528.12630
9. UNESCO. Early and unintended pregnancy \& the education sector: Evidence review and recommendations. Paris: United Nations Educational, Scientific and Cultural Organization; 2017.
10. Kafle PP. Health problems and social consequences in teenage pregnancy in rural Kathmandu Valley. Nepal Med Coll J. 2010;12.
11. Merrick TW. Making the Case for Investing in Adolescent Reproductive Health: A Review of Evidence and PopPov Research Contributions. Washington, DC; 2015.
12. WHO. WHO Guidelines on Preventing Early Pregnancy and Poor Reproductive Outcomes Among Adolescents in Developing Countries. Geneva; 2011.
13. Nyarko SH. Prevalence and correlates of contraceptive use among female adolescents in Ghana. BMC Womens Health [Internet]. 2015 Dec 19 [cited 2018 Jan 19];15(1):60. Available from: http://dx.doi.org/10.1186/s12905-015-0221-2
14. Kebede A, Belina S, Biratu Y, Kebede A. Modern contraceptive use among sexually active female adolescent: Trends and determinants insight from National Demographic and health survey. Reprod Health [Internet]. 2021; Available from: https://doi.org/10.21203/rs.3.rs34459/v1
15. Hounton S, Barros AJD, Amouzou A, Shiferaw S, Maïga A, Akinyemi A, et al. Patterns and trends of contraceptive use among sexually active adolescents in Burkina Faso, Ethiopia, and Nigeria: Evidence from cross-sectional studies. Glob Health Action [Internet]. 2015 Dec 9 [cited 2018 Jan 22];8(1):29737. Available from: https://www.tandfonline.com/doi/full/10.3402/gha.v8.29737
16. Ahinkorah BO. Predictors of modern contraceptive use among adolescent girls and young women in sub-Saharan Africa: a mixed effects multilevel analysis of data from 29 demographic and health surveys. Contracept Reprod Med. 2020 Nov;5(1):32.
17. Ahinkorah BO, Hagan JEJ, Seidu A-A, Sambah F, Adoboi F, Schack T, et al. Female adolescents' reproductive health decision-making capacity and contraceptive use in subSaharan Africa: What does the future hold? PLoS One. 2020;15(7):e0235601.
18. Arthur MC, Champiti M. Sexual behaviour and contraceptive knowledge and use among female adolescents in Senior High School in Manhyia submetro, Kumasi. 2016 Sep 29 [cited 2018 Jan 22]; Available from: http://ir.knust.edu.gh/handle/123456789/8989
19. PSI. Sexual and Reproductive Health of Adolescents and Youth [Internet]. 2016. Available from: http://www.psi.org/wp-content/uploads/2016/06/RH_EvidenceSeries_d1.pdf
20. Cleland J, Conde-Agudelo A, Peterson H, Ross J, Tsui A. Contraception and health. Lancet [Internet]. 2012;380. Available from: http://dx.doi.org/10.1016/S0140-6736(12)60609-6
21. Ahmed S, others. Maternal deaths averted by contraceptive use: an analysis of 172 countries. Lancet. 2012;380:111-25.
22. Canning D, Schultz TP. The economic consequences of reproductive health and family planning. . Lancet. 2012;380:165-71.
23. Schultz TP, Joshi S. Family planning and women's and children's health: consequences of an outreach program in Matlab, Bangladesh. . Demography. 2013;50:149-80.
24. Yussuf MH, Elewonibi BR, Rwabilimbo MM, Mboya IB, Mahande MJ. Trends and predictors of changes in modern contraceptive use among women aged 15-49 years in Tanzania from 2004-2016: Evidence from Tanzania Demographic and Health Surveys. PLoS One [Internet]. 2020 Jun 29;15(6):e0234980. Available from: https://doi.org/10.1371/journal.pone. 0234980
25. Sidibe S, Alexandre D, Camara B, Nafissatou D, Manet H, El Ayadi A, et al. Trends in contraceptive use, unmet need and associated factors of modern contraceptive use among urban adolescents and young women in Guinea. BMC Public Health. 2020 Dec 1;20.
26. Chola M, Hlongwana K, Ginindza TG. Patterns, trends, and factors associated with contraceptive use among adolescent girls in Zambia (1996 to 2014): a multilevel analysis. BMC Womens Health. 2020 Aug;20(1):185.
27. Kebede A, Kitila S, Terfa Y, Olika A. Contraceptive use among sexually active female adolescent:Trends and determinants insight from National Demographic and health survey. 2020.
28. Behrman JA, Wright KQ, Grant MJ, Soler-Hampejsek E. Trends in Modern Contraceptive Use among Young Adult Women in sub-Saharan Africa 1990 to 2014. Stud Fam Plann [Internet]. 2018 Dec 15 [cited 2019 Jun 26];49(4):319-44. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/sifp. 12075
29. Central Statistical Office (CSO) Tropical Diseases Research Centre (TDRC), M of H (MOH), University of Zambia and MII, Central Statistical Office (CSO) Tropical Diseases Research Centre (TDRC), and ICF International M of H (MOH). Zambia Demographic and Health Survey 2013-14. Calverton, Maryland, USA: CSO and Macro International Inc.; 2014.
30. Powers DA, Yoshioka H, Yun M-S. Mvdcmp: Multivariate Decomposition for Nonlinear Response Models. Stata J [Internet]. 2011 Dec 1;11(4):556-76. Available from: https://doi.org/10.1177/1536867X1201100404
31. Blinder AS. Wage Discrimination: Reduced Form and Structural Estimates. J Hum Resour [Internet]. 1973 Feb 17;8(4):436-55. Available from: http://www.jstor.org/stable/144855
32. Oaxaca R. Male-Female Wage Differentials in Urban Labor Markets. Int Econ Rev (Philadelphia) [Internet]. 1973 Feb 17;14(3):693-709. Available from: http://www.jstor.org/stable/2525981
33. Worku AG, Tessema GA, Zeleke AA. Trends of modern contraceptive use among young married women based on the 2000, 2005, and 2011 Ethiopian Demographic and Health

Surveys: a multivariate decomposition analysis. PLoS One [Internet]. 2015 Jan 30;10(1):e0116525-e0116525. Available from: http://search.ebscohost.com/login.aspx?direct=true\&db=mnh\&AN=25635389\&site=ehostlive
34. Ministry of health. Adolescent Health Strategy 2017-2021. Lusaka, Zambia; 2017.
35. Subedi R, Jahan I, Baatsen P. Factors Influencing Modern Contraceptive Use among Adolescents in Nepal. J Nepal Health Res Counc [Internet]. 2018 Nov 2;16(3 SE-Review Article). Available from: https://www.nepjol.info/index.php/JNHRC/article/view/21419
36. Palamuleni M. Trends and Determinants of contraceptive use among female adolescents in Malawi. 2017.
37. Harper C, Callegari L, Raine T, Blum M, Darney P. Adolescent clinic visits for contraception: support from mothers, male partners and friends. Perspect Sex Reprod Health. 2004;36(1):206.

Table 1: Distribution of adolescent girls by background characteristics and survey year, ZDHS 1996-2013/14

Marital Status	Never in Union	1,435	72.4	1,307	72.4	1,302	81.5	3,058	83.0	7,102	78.3
	Married/Living with Partner	501	25.3	449	24.9	270	16.9	572	15.5	1,792	19.8
	Widowed/Separate d/Divorced	46	2.3	50	2.8	26	1.6	56	1.5	178	2.0
Knowledge of	Knows no method	247	12.5	127	7.0	150	9.4	162	4.4	686	7.6
	Knows modern methods	1,728	87.5	1,677	93.0	1,447	90.6	3,519	95.6	8,371	92.4
Residence	Urban	799	40.3	639	35.4	809	50.6	1,850	50.2	4,097	45.2
	Rural	1,183	59.7	1,167	64.6	789	49.4	1,836	49.8	4,975	54.8

Table 2: Decomposition of change in modern contraceptive use among adolescents in Zambia, 1996 to 2014.

```Reference group (A): Year==1 (2014) --- Comparison group (B): Year_2==0 (1996)```					
Modern Contraceptive Use		$\mathrm{P}>\mathrm{z}$	$\begin{aligned} & {[95 \%} \\ & \text { Conf. } \end{aligned}$	Interval]	
E	$0.01232$	0.001	-0.01972	0.00491	
C	0.06823	0	0.05443	0.08204	
R	0.05592	0	0.04486	0.06697	
Due to Difference in Characteristics (E)					
Modern Contraceptive Use	Coef.	$\mathrm{P}>\mathrm{Z}$	$\begin{aligned} & {[95 \%} \\ & \text { Conf. } \end{aligned}$	Interval]	Pct.
Age (Years)					
15	Ref				
16	$0.00112$	0.446	-0.00401	0.00177	-2.01
17	$0.00113$	0.422	-0.00389	0.00163	-2.02
18	0.00424	0.405	-0.00573	0.0142	7.58
19	0.00153	0.406	-0.00208	0.00513	2.73
Marital Status					
Never in Union	Ref				
Married/Living with Partner	$0.07002$	0.407	-0.2356	0.09556	-125.22
Widowed/Separated/Divorced	$0.00321$	0.423	-0.01106	0.00464	-5.74
Residence					
Urban	0	.	0	0	0
Rural	0.00778	0.456	-0.01266	0.02822	13.91
Education					

\(\left.\begin{array}{|l|l|l|l|l|l|}\hline No Education \& Ref \& \& \& \& <br>
\hline Primary \& - <br>

\& 0.11258\end{array}\right) 0.512\)-0.44921 | 0.22405 |
| :--- |


[^0]:    Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article.

    All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

