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Abstract
Background. Missing data are a prevalent problem in almost

all types of data analyses, such as survival data analysis. Objective.
To evaluate the performance of multivariable imputation via

chained equations in determining the factors that affect the survival
of multidrug-resistant-tuberculosis (MDR-TB) and HIV-coinfect-
ed patients in KwaZulu-Natal. Materials and Methods. Secondary
data from 1542 multidrug-resistant tuberculosis patients were used
in this study. First, data from patients with some missing observa-
tions were deleted from the original data set to obtain the complete
case (CC) data set. Second, missing observations in the original
data set were imputed 15 times to obtain complete data sets using
a multivariable imputation case (MIC). The Cox regression model
was fitted to both the CC and MIC data, and the results were com-
pared using the model goodness of fit criteria [likelihood ratio
tests, Akaike information criterion (AIC), and Bayesian
Information Criterion (BIC)]. Results. The Cox regression model
fitted the MIC data set better (likelihood ratio test statistic =76.88
on 10 df with P<0.01, AIC =1040.90, and BIC =1099.65) than the
CC data set (likelihood ratio test statistic =42.68 on 10 df with
P<0.01, AIC =1186.05 and BIC =1228.47). Variables that were
insignificant when the model was fitted to the CC data set became
significant when the model was fitted to the MIC data set.
Conclusion. Correcting missing data using multiple imputation
techniques for the MDR-TB problem is recommended. This
approach led to better estimates and more power in the model.

Introduction
Loveday et al.1 conducted a study in KwaZulu-Natal (South

Africa) whose objective was “To improve the treatment of mul-
tidrug-resistant-tuberculosis (MDR-TB) and HIV coinfected
patients by investigating the relationship between health system
performance and patient outcomes at 4 decentralized MDR-TB
sites”. Although these data are at least 10 years old, we believe
they still have useful information about the survival of MDR-TB
and HIV co-infected patients. Hence, we wish to use the data to
investigate the factors which affect the survival of MDR-TB and
HIV-coinfected patients.

The problem with the data of Loveday et al. is that it has miss-
ing data with an unknown missingness mechanism among Rubin:2
i) missing at random (MAR); ii) missing completely at random
(MCAR); iii) missing not at random (MNAR). This complicates
the application of standard survival analysis methods to analyze
the data, as the missing data mechanism determines the statistical
data analysis method.3,4 When data are MCAR, the standard statis-
tical analysis methods applied to complete data cases obtain unbi-
ased model parameter estimates at the cost of the loss in the preci-
sion of the estimates and the reduced power of the statistical tests
about the model parameters.5,6 The losses and reduced power are
due to the reduction in the sample data size after deleting the cases
with missing values. In contrast, applying standard statistical
analysis methods to complete data cases after deleting cases with
missing values due to either MAR or MNAR obtains biased model
parameter estimates.5,6

Among the traditional methods developed to enable
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researchers to make statistical inferences from incomplete data sets
are listwise deletion or complete case analysis, pairwise deletion,
mean substitution, regression imputation, and inclusion of an indi-
cator variable.7 The disadvantages of these methods include further
loss of data, obtaining biased model parameter estimates, and
underestimating their standard errors. Furthermore, if model
parameter estimators are consistent in the no missing data problem,
then they are also consistent in the listwise or complete case only
if the missingness process is MCAR.8,11 Better statistical methods
for handling missing data include maximum likelihood estimation
via the expectation-maximization algorithm and multiple imputa-
tion (MI).9,11-17 For general missing data patterns, imputation
methods such as MICE,18-20 which is also the subject of this paper,
are widely used. Simulation studies provide evidence that MICE
generally yields estimates that are unbiased and provide appropri-
ate coverage.18,21 However, MICE is still rarely used in epidemiol-
ogy, perhaps in part because relatively little practical guidance is
available for implementing and evaluating this method. Only a few
studies have looked at practical questions about how to implement
MI in large data sets used for diverse purposes.22-24

The other objective of this paper is to evaluate the performance
of MICE in determining the factors that affect the survival of
MDR-TB and HIV-coinfected patients in KwaZulu-Natal using the
Loveday et al. data set.1 The paper only focuses on MICE because
the method involves no variable distributional assumptions and
can handle different types of variables.25,26 MICE can also incor-
porate variables that are functions of other variables, and it does
not require monotonic missing-data patterns.19,26,27 Furthermore,
the advantages of MI over other methods include increased effi-
ciency and the ability to make valid inferences. The imputations
are randomly drawn from the updated represented distribution of
the data. Hence, the efficiency of estimation is increased by MI. By
combining complete data inferences according to Rubin’s rules,
MI is also able to make valid inferences.11 MI can incorporate all
sources of variability and uncertainty, both within-imputation vari-
ance and between-imputation variance. By capturing the between-
imputation variance, it solves the problem of standard errors that
are too small.19,26

Materials and Methods
Data sources

The data used in this study are described in Loveday et al.1 The
authors were cleared to use the data by the University of KwaZulu-
Natal Biomedical Research Ethics Committee (Ref: BF052/09)
and by the KwaZulu-Natal Department of Health. Only secondary
data, the data routinely collected by health workers for clinical care
using existing records and databases, structured questionnaires,
observation, and interviews, were used by Loveday et al. The
authors report that to protect patient confidentiality and anonymity,
the databases were deidentified, and access was strictly limited.
Furthermore, informed consent was waived by the ethics commit-
tee since all patient data used, were previously collected during the
course of routine medical care and did not pose any additional risks
to the patients. 

According to Loveday et al, their study was a prospective
mixed methods case study of four decentralized MDR-TB sites in
KwaZulu-Natal (South Africa) between 1 July 2008 and 30 June
2012. The authors did not include the fifth center (centralized hos-
pital) in their study. In this study, we used data from 1542 MDR-
TB patients from five TB centers (four decentralized sites and one
centralized hospital) who were diagnosed with TB. The response
variable of interest is the time to death of an MDR-TB patient. 

The Cox proportional hazards model
One of the objectives of this study is to identify factors that

affect the time (t) to death of patients with a confirmed diagnosis
of MDR-TB. The Cox proportional hazards (PH) model expresses
the patient hazard rates as functions of potential factors (covari-
ates) as follows:

Let X iT= (Xi1, Xi12,…, Xip) be a p-dimensional vector of the val-
ues of the covariates associated with the ith patient. Then, the Cox
proportional hazards regression model is as follows:28-30

                                          
(1)

where βT=(β1,β2,…, βp) is a p-dimensional vector of regression
coefficients to be estimated from the data, and h0 (t)  is the unspec-
ified baseline hazard function that does not have to be estimated.

The hazard model in model (1) makes no assumptions about
the shape of the hazard function over time. A hazard function could
be constant, increasing, or decreasing, or it could be a combination
of two or three of these trends. Model (1) can be written in terms
of the survivor function:30,31

                                          
(2)

The model (1) assumptions that may be violated by the MDR-
TB data are as follows: i) the covariates  X iT do not vary with time,
and hence, the hazard rate ratios of pairs of patients do not vary
with time; ii) censoring and time to cure are independent; iii) the
log hazard rate is indeed a linear function of the covariates. 

The parameters are estimated as values of  b that maximize the
Cox likelihood (also called partial likelihood) function for cen-
sored data:30-33

                                        
(3)

where Rj is the group of patients at risk of cure at time tj (0 < t1 <
t2 < t3 <…< tk < ∞) be k observed death times of patients in the
cohort of MDR-TB patients during the observation period).

Consider the log partial likelihood function l(b) = ln L(b) and
let l(β̂) evaluated at the maximum likelihood estimate of b for a
reduced Cox PH model, and let l(t) be l(b) but evaluated at the
maximum likelihood estimate of b of the full/saturated model.
Then, the test statistic of the null hypothesis that the reduced Cox
PH model fit to the data is good is:30,34

                                        
(4)

The null hypothesis is rejected if H0 if or if the
p-value < a
where
n is the number of patients 
p is the number of parameters and 
a is the level of significance of the test
To test the null hypothesis H0:bj=bj

0,

The Wald test statistic is used, where se (β̂j) is the 
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estimate of the asymptotic standard error of β̂ j (square root of the

jth diagonal element of . 
Under the null hypothesis, the asymptotic distribution of Z is

the standard normal distribution.
If the assumptions of the model (1) are not violated by the data,

then developing a Cox PH model involves variable selection. To
do this, the partial likelihood ratio (4) and the Wald tests are used
in conjunction with information criteria such as the Akaike infor-
mation criterion (AIC):30,35

                                        (5)

where p is the number of model parameters. The model with the
smallest AIC among competing Cox PH models is the best.

Proportional hazards and linearity assumptions
The null hypothesis for the linearity test is that the predictor in

the Cox PH model is  X i
T b. The hypothesis may be tested by test-

ing the null hypothesis that q2 = 0 in the Cox PH model:30,33

                                       (6)

where β̂ is from fitting the Cox PH model (1).
Rejecting the null hypothesis implies that X i

T b is an incorrect
specification of the predictor in the Cox PH model. The propor-
tional hazards assumption may be tested by testing the null hypoth-
esis that f2 = 0 in the Cox PH model:30,33

                                       (7)

where β̂ is from fitting the Cox PH model (1). Rejecting the null
hypothesis implies that the proportional hazards assumption does
not hold.

Interpretation of the estimated coefficients of the Cox
proportional hazards model

The hazard ratio (HR) associated with the jth covariate is:30,33

                                       (8)

where β̂ j is the estimate of the coefficient of the jth covariate (bj).

For continuous covariates, if β̂ j > 0 then a unit increase in the
jth covariate increases the hazard by 100 (HRj – 1)%. Otherwise, a
unit increase in the jth covariate decreases the hazard by 100 (HRj

– 1)%. For categorical variables, the jth covariate is actually the jth
category/level of the categorical variable. 

Hence, if  β̂ j > 0, then patients in the jth category/level face a
hazard 100 (HRj – 1)% greater than those in the specified reference
category/level. Otherwise, the patients in the jth category/level face
a hazard 100 (HRj – 1)% lower than those in the specified refer-
ence category/level. 

The 100 (1 – a)% confidence interval for the true hazard ratio
associated with the jth covariate (ebj) is given by:

                                       (9)

where za/2 is the 1–a/2 quantile of the standard normal distribution

and  se (β̂j) is the standard error of  of β̂j . If CRj includes one, then
there is no association between the hazard (and the survival) and
the jth covariate.

In summary, ebj indicates how large (or small) the hazard in one
group or subject is with respect to the hazard in the reference group
or subject.

Multiple imputation
The basic idea of MI in the context of the present study is to

create a small number, m, of copies of the MDR-TB data set, each
of which has the missing values suitably imputed. Traditionally,
m=3 to 10. Then, the Cox PH regression model is independently
fitted to each of the m complete MDR-TB data sets. Estimates of
the parameters and values of other statistics from fitting the Cox
PH regression models to each of the m complete MDR-TB data
sets are averaged to obtain single estimates. Standard errors are
computed according to the “Rubin rules”.11 The above three main
steps are schematically displayed in Figure 1.36,37

For each of the m imputed data set point estimates, Q̂i, i =
1,2,...,m, are computed for every parameter Q of interest as well as
the estimate of the variance of  Q̂i denoted by Ui. Then, the pooled
point estimate of Q, the within-imputation variance (U– ) the
between imputation variance (B) are given by:11,16

 (10)

respectively. The estimate of the variance of  Q– is calculated as:

 (11)

Here, the factor (1+m-1) multiplied by B is an adjustment to
correct for the extra variance caused by using a finite number of
imputations m to estimate Q–. This adjustment is needed to make
valid inferences with low m. Otherwise, the analysis would result

                             Article

Figure 1. Schematic representation of the main steps in multiple
imputation: incomplete data are the original multidrug-resistant-
tuberculosis data set; imputed data are each of the m copies of the
original multidrug-resistant-tuberculosis data set with chained
equations imputed missing values; pooled results are the applica-
tion of the “Rubin rules”;11 and multivariate imputation by
chained equations.
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in too low p values or too short confidence intervals. The proce-
dure described above to pool the repeated-imputation results is
referred to as Rubin’s rules.11,26

Inferences about the Q (confidence intervals and hypothesis
tests) are then based on Student’s t approximation:11,16,38

(12)

where v is the degrees of freedom. The quantity r = 

in v is the ratio of B to U– and measures the relative increase in vari-
ance due to the missing data, i.e., the cost due to missing data.11

Furthermore, l = is the rate of missing information for Q

and e = is the efficiency of  Q– based on m imputed data sets 

relative Q– to  based on an infinite number of imputed data sets.11,16

Multivariate imputation by chained equations
Multivariate imputation by chained equations (MICE) is one

particular MI technique that is used in this study. Following Azur
et al. and in the context of this study, the technique is implemented
as follows.19,39

Let Y1,Y2,…,Yk represent the variables with missing values in
the MDR-TB data set. 

Step 1: Perform mean imputations of the missing values for all
the variables. 

Step 2: Set the imputations for variable Yi back to missing.
Step 3: Regress Yi on all the other variables with imputed val-

ues in step 2 and all the other variables in the MDR-TB data set.
Step 4: Replace the missing values of Yi with the predicted val-

ues from the fitted regression model in step 3.
Step 5: Repeat steps 2-4 with the other Yi until the missing val-

ues of all the Yi(i = 1,2,…,k) have been replaced with predictions
from the fitted regression models.

Step 6: Repeat steps 2-5 l times until the estimated parameters
of the regression models converge or become stable. Store the
imputed data set.

Step 7: Repeat steps 2-6 to obtain m imputed MDR-TB data
sets.

In Azur et al.,39 it is suggested that l ≥10 and m≥10 be  used
and that the precision of the pooled estimates of the parameters and
the power of the tests about the parameters increases with m. 

In this study, l=10 and m=15 were used to guarantee to obtain
at least 95% efficient parameter estimates after assuming that the
rate of missing information for all the parameters is λ≤0.7 (see the
rates of missing data in Table 1 and Figure 2). The imputed MDR-
TB data sets were generated and analyzed using the MICE in SPSS
Version 25 and STATA Version 19, respectively.

Results
The median follow-up time was 26.8 months. By 30 June

2012, 56% of the patients had been cured, 15.9% were deceased,
and the rest had defaulted or lost to follow-up (see Table 2). Table
2 also displays the frequency distributions of the other variables in
the data whose effects on the survival time of MDR-TB patients
were investigated in this study. Table 2 shows that most of the
patients were between 18 and 50 years old, had no extrapulmonary

TB, had no commodity diseases, and had no previous MDR-TB
episodes. This suggests dropping the type of TB, previous MDR-
TB episodes, and comorbidities from among the factors to be
investigated for their effects on the time to cure MDR-TB patients.
However, Table 1 shows that the variable comorbidities had the
largest percentage of missing data (45%), followed by other vari-
ables in the table. Furthermore, Figure 2 shows that the MDR-TB
data set has approximately 7.8% missing values in 50% (5) of the
variables and/or in 66.7% (1028) of the data cases. Thus, the size
of the complete MDR-TB data set is 514. This motivated the
MICE approach of analyzing MDR-TB data to meet the objectives
of this study.

Estimated HRs with 95% CIs, corresponding to the Cox pro-
portional hazard model and imputed data sets, are given in Table 3.
Age groups (41 to 50 years and 51 or more) at diagnosis and HIV-
negative status were not significant in the Cox proportional model
with missing data due to unavoidable loss in the power of the
model. Furthermore, the female sex was significant in the Cox
model but not in the imputed model. After imputing missing data,
all of these variables were retained in the model. 

Comparing the performance of the models in Table 4, imputa-
tion of missing data led to improvement in model goodness of fit
(likelihood ratio test =76.88, AIC =1040.90, Bayesian Information
Criterion (BIC) =1099.65 for the MICE versus likelihood ratio test
=42.68, AIC =1186.05, BIC =1228.47 for the Cox model with
missing data).

This is not shocking as the results suggest because we have
seen that 45.45% of the covariates had random missing values.
Recall that the MAR data are ignorable because they are derived
from observed data (Yobs). When missing data are ignorable, the
rate of missing information can be negligible, and the chances of
obtaining biased results are higher. We will interpret the results
obtained using imputed data sets.

After a median follow-up of 26.8 months, the hazard ratio for
baseline weight was 0.98; 95% CI: 0.97-0.99; S.E =0. We found
that patients treated in decentralized sites (HR =1.72, 95% CI:

                                                                                                                   Article

Figure 2. Frequency distributions of missing data by variable,
cases, and values in the KwaZulu-Natal (RSA) multidrug-resis-
tant-tuberculosis data set: 2008-2012.

Table 1. Frequency distribution of missing values in the
KwaZulu-Natal (RSA) multidrug-resistant-tuberculosis dataset by
variable: 2008-2012.

Variable                                Missing         Observed         Mean

Comorbidities                                 694 (45.0)                   848                         
Time to be cured (months)        453 (29.4)                  1089              18.30 [8.46]
Baseline weight (kg)                      112 (7.3)                   1430             48.71 [17.01]
Type of TB                                           1 (0.1)                     1541                        
HIV status                                          69 (4.5)                    1473                        
() are percentages; [] are standard deviations. TB, tuberculosis.
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0.73-4.06) had higher chances of dying than those who were treat-
ed in the centralized hospital. However, this was not significant.
The results also show that patients in the age group 31 to 40 years
(HR =1.50, 95% CI: 1.07-2.10), 41 to 50 years (HR =1.81, 95%
CI: 1.24-2.64), and more than 50 years (HR =3.21, 95% CI: 2.11-
4.87) age group had higher chances of dying than those in the 18
to 30 years age group. MICE results also revealed that HIV-nega-
tive patients had lower chances of dying than HIV-positive patients
(HR =0.68, 95% CI: 0.48-0.97). 

It should be noted that when the missing rate is low, the results
obtained using incomplete data might be similar to those of MICE.
It has also been noted that with a more than 60% missing rate, the
MICE model might not provide accurate estimates.40

Discussion
In this study, we evaluated the handling of survival data with

missing covariate values by means of MICE. In general, careful
modeling is required when using MICE to obtain valid statistical
inferences.27 Another important point to remember concerns the
order in which the imputation models should be imputed.
Imputation using chained equations does not require us to specifi-
cally order the variables that must be imputed because the software

imputes by default the variables from the most observed to the
least observed. Missing data are a common problem in longitudinal
studies. Ignoring incompleteness or handling the data inappropri-
ately may bias study results, reduce the power and efficiency of the
study, and alter important risk/benefit relationships.

In the results presented, some variables lost their significant
effect in the incomplete data analysis. For example, age is known
as one of the most important prognostic variables.41 However, this
variable did not reach a significant level in the incomplete data
model. Once missing data were imputed, power was increased, and
variables lost their effect in the incomplete model, such as “previ-
ous MDR-TB episodes”, and reached a significance level. This
shows that missing data depend on other patients’ characteristics
and therefore can be well imputed using MI methods. The results
also showed that the estimates were relatively similar to those
obtained from the incomplete case analysis. However, after impu-
tation, the standard errors were smaller and the confidence inter-
vals were narrower.

Limitations of the study
Our work involved several limitations. We used a data set con-

taining only eight variables. Therefore, the impact of the number
of variables offered was not investigated. Furthermore, we only
compared the performance of the Cox proportional model using

                             Article

Table 2. Frequency distribution of the variables in the KwaZulu-Natal (RSA) multidrug-resistant-tuberculosis dataset by site (central-
ized, decentralized), 2008-2012.

                                                                                                                               Site                                                                      
Variable                                             Centralized hospital                    Decentralized 4 sites                                                   Total
                                                                   812 (52.7)                                      730 (47.3)                                                       1542 (100)

Age (years) at diagnosis*                                                                                                                                                                                                                       
18-30                                                                                 303 (19.7)                                                     245 (15.9)                                                                            548 (35.5)
31-40                                                                                 292 (18.9)                                                     258 (16.7)                                                                            550 (35.7)
41-50                                                                                  145 (9.4)                                                       153 (9.9)                                                                             298 (19.3)
51+                                                                                     72 (4.7)                                                         74 (4.9)                                                                               146 (9.5)
Gender                                                                                                                                                                                                                                                         
Male                                                                                 399 (25.9)                                                     346 (22.4)                                                                            745 (48.3)
Female                                                                             413 (26.8)                                                     384 (24.9)                                                                            797 (51.7)
Previous MDR-TB episodes                                                                                                                                                                                                                    
0                                                                                         802 (52.0)                                                     673 (43.6)                                                                           1475 (95.7)
1                                                                                            9 (0.6)                                                          55 (3.6)                                                                                64 (4.2)
2+                                                                                        1 (0.1)                                                           2 (0.1)                                                                                  3 (0.2)
Type of TB                                                                                                                                                                                                                                                   
Pulmonary                                                                       804 (52.1)                                                     706 (45.8)                                                                           1510 (97.9)
Extra pulmonary                                                               7 (0.5)                                                          24 (1.6)                                                                                31 (2.1)
Comorbidities                                                                                                                                                                                                                                            
No diseases or conditions                                          780 (50.6)                                                       12 (0.8)                                                                              792 (51.4)
Diabetes                                                                            10 (0.6)                                                         10 (0.6)                                                                                20 (1.2)
Epilepsy                                                                              4 (0.3)                                                           8 (0.5)                                                                                 12 (0.8)
Hearing loss prior to treatment                                   1 (0.1)                                                          10 (0.6)                                                                                11 (0.7)
Renal problems                                                                0 (0.0)                                                           3 (0.2)                                                                                  3 (0.2)
Substance abuse                                                              0 (0.0)                                                           4 (0.3)                                                                                  4 (0.3)
Liver problems                                                                 1 (0.1)                                                           1 (0.1)                                                                                  2 (0.2)
Psychiatric problems                                                      4 (0.3)                                                           0 (0.0)                                                                                  4 (0.3)
HIV status                                                                                                                                                                                                                                                    
Positive                                                                            576 (37.4)                                                     524 (34.0)                                                                           1100 (71.4)
Negative                                                                          211 (13.7)                                                     162 (10.5)                                                                            373 (24.2)
TB outcome**                                                                                                                                                                                                                                           
Cured                                                                               441 (28.6)                                                     445 (28.9)                                                                            886 (57.5)
Died                                                                                   113 (7.3)                                                       132 (8.6)                                                                             245 (15.9)
Defaulted                                                                        229 (14.9)                                                      105 (6.8)                                                                             334 (21.7)
Lost to follow-up                                                             29 (1.9)                                                         48 (3.1)                                                                                77 (5.0)
() are percentages; *median age=34 years; **median follow-up=26.8 months. MDR-TB, multidrug-resistant-tuberculosis; TB, tuberculosis.                                                                                                   
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incomplete data sets and the MICE under the MAR mechanism. It
is known that the performance of models depends to a great extent
on the mechanism of missing data, rate of missing data, method of
imputation of missing data, and sample size.42,43 Our work was
simply a study to explain the methodological issues in the applica-
tion of the MICE method and its art in the recovery of information.
We showed that analyzing incomplete data decreases the power
and that the MICE method recovers the data. However, at this
stage, due to the limitations listed above, we cannot provide a spe-
cific guideline on how best to tackle the problem of missing data
because there are many approaches to address missing data.

In our analysis, we used only the information criteria as a
method of selecting variables in the Cox model. However, there
are many other popular approaches that can be used, such as the
boosting method, which originally evolved from the field of
machine learning as an approach to classification problems and
was later adapted to statistical models.44,45 Other selection meth-
ods that can be used are stepwise regression and its variants for-

ward selection, lasso and backward elimination.46

Conclusions
Procedures of MIs including the survival outcome and MIs

including the imputed observed event time have been shown to
perform quite adequately. From our results, we have seen that MI
performs best in ordinary survival data. This procedure was found
to perform well in the literature and even though more recent
improvements have been suggested, this procedure is widely used
by many authors. Based on our thoughts both on our own study
results and on other studies, we conclude that the procedure of MI
performs well and could be recommended for imputing missing
covariate values with survival data because applying models to
incomplete data reduces the power and efficiency of the study.
Applying the MICE model may provide better and more accurate
estimates and increase the power of the model.

                                                                                                                   Article

Table 3. Comparison of the efficiency of the parameter estimates and power of the tests from fitting the Cox proportional hazards model
to the original and imputed datasets: m=15 imputed datasets.
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Table 4. Comparison of the goodness of fit statistics from fitting the Cox proportional hazards model to the original and imputed
datasets: m=15 imputed datasets.

                                               Dataset
Statistic                                                           Original MDR-TB                                     MICE MDR-TB

Sample size (n)                                                                                  514                                                                           1542
Proportionality of Cox PH model (θ2)                        5.52 on df =10, p=0.854                                       7.96 on df =10, p=0.438
Likelihood ratio test (ϕ2)                                            42.68 on df =10, p<0.01                                       76.88 on df =10, p<0.01
AIC of Cox PH model                                                                    1186.047                                                                   1040.902
BIC of Cox PH model                                                                    1228.469                                                                   1099.651
MDR-TB, multidrug-resistant-tuberculosis; PH, proportional hazards; AIC, Akaike information criterion; BIC, Bayesian Information Criterion; MICE, multivariate imputation by chained equations.
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