No correlation between the variants of exostosin 2 gene and type 2 diabetes in Burkina Faso population

Abstract

Recent genome-wide association studies and replication analyses have reported the association of variants of the exostosin- 2 gene (EXT2) and risk of type 2 diabetes (T2D) in some populations, but not in others. This study aimed to characterize the variants rs1113132, rs3740878 and rs11037909 of EXT2 and to determine the existence of a possible correlation with T2D in Burkina Faso. It is a case-control study undertaken in Burkina Faso in the city of Ouagadougou at the Hospital of Saint Camille of Ouagadougou from December 2014 to June 2015. It relates to 121 type 2 diabetes cases and 134 controls. The genotyping of these polymorphisms was done by real-time PCR using the allelic exclusion method with TaqMan probes. The minor allele frequencies (MAFs) was almost identical in diabetic and control subjects for the all three Single Nucleotide Polymorphisms (SNPs) with no statistical significance, p>0.05: rs1113132 (OR=0.89; p=0.82); rs11037909 (OR=0.89; p=0.74) and rs3740878 (OR=1.52; p=0.42). None of the three polymorphisms studied was associated with the risk of DT2. However, an association between the BMI, age and type 2 diabetes was noted. The variants of EXT2 would not be associated to the risk of T2D in the African black population of Burkina Faso.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

International Diabetes Federation [IDF]. Eighth edition 2017. IDF Diabetes Atlas, 8th edition. 2017;

Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007; 445(7130):881-5.

Zeng CP, Lin X, Peng C, Zhou L, You HM, Shen J, et al. Identification of novel genetic variants for type 2 diabetes, childhood obesity, and their pleiotropic loci. J Hum Genet. 2019;64(5):369-77.

Kifagi C, Makni K, Boudawara M, Mnif F, Hamza N, Abid M, et al. Association of genetic variations in TCF7L2, SLC30A8, HHEX, LOC387761, and EXT2 with type 2 diabetes mellitus in Tunisia. Genet Test Mol Biomarkers. 2011;15(6):399-405.

Park S, Liu M, Kang S. Alcohol Intake Interacts with CDKAL1, HHEX, and OAS3 Genetic Variants, Associated with the Risk of Type 2 Diabetes by Lowering Insulin Secretion in Korean Adults. Alcohol Clin Exp Res. 2018; 42(12):2326-36.

Kalantari S, Sharafshah A, Keshavarz P, Davoudi A, Habibipour R. Single and multi-locus association study of TCF7L2 gene variants with susceptibility to type 2 diabetes mellitus in an Iranian population. Gene. 2019; 696:88-94.

Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD, Freedman BI, et al. Association analysis in african americans of european-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes. 2008; 57(8):2220-5.

Liu L, Yang X, Wang H, Cui G, Xu Y, Wang P, et al. Association between variants of EXT2 and type 2 diabetes: A replication and meta-analysis. Hum Genet. 2013; 132(2):139-45.

Nemr R, Al-Busaidi AS, Sater MS, Echtay A, Saldanha FL, Racoubian E, et al. Lack of replication of common EXT2 gene variants with susceptibility to type 2 diabetes in Lebanese Arabs. Diabetes Metab. 2013; 39(6):532-6.

Ren Q, Xiao J, Han X, Yang W, Ji L. Impact of variants of the EXT2 gene on Type 2 diabetes and its related traits in the Chinese han population. Endocr Res. 2015; 40(2):79-82.

Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, et al. Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009; 58(7):1690-9.

Tekola-Ayele F, Adeyemo AA, Rotimi CN. Genetic epidemiology of type 2 diabetes and cardiovascular diseases in Africa. Prog Cardiovasc Dis. 2013;56(3) 251-260.

Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16(3):1215.

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2) 263-265.

Marceline YT, Issiaka S, Gilberte KC, Nadège R, Macaire OS, Arsène YA, et al. Diagnostic et prévalence du syndrome métabolique chez les diabétiques suivis dans un contexte de ressources limitées : Cas du Burkina-Faso. Pan Afr Med J. 2014;

Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352(9131):837-53.

Yanogo RDA, Sagna Y, Tieno H, Guira O, Drabo YJ. Prevalence of Diabetes and Cardiovascular Risk Factors in Ouagadougou (Burkina-Faso). OALib. 2014; 1:e595.

Ioannidis JPA, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2007; 2(9):e841.

Klimentidis YC, Abrams M, Wang J, Fernandez JR, Allison DB. Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Hum Genet. 2011; 129(4):407-18.

Diyane K, El Ansari N, El Mghari G, Anzid K, Cherkaoui M. Caractéristiques de l’association diabète type 2 et hypertension artérielle chez le sujet âgé de 65 ans et plus. Pan Afr Med J. 2013;14.

Published
2020-10-29
Info
Issue
Section
Original Articles
Keywords:
Type 2 Diabetes, Exostosin-2, association, SNPs, Burkina Faso
Statistics
  • Abstract views: 164

  • PDF: 119
  • HTML: 0
How to Cite
Ouedraogo, S. Y., Tchelougou, D., Kologo, J. K., Sombie, H. K., Zeye, M. M. J., Compaore, R. T., Ouattara, A. K., Sorgho, A. P., Obiri-Yeboah, D. O.-Y., Soubeiga, S. T., Nagabila, I., Yonli, A. T., Djigma, F. W., & Simpore, J. (2020). No correlation between the variants of exostosin 2 gene and type 2 diabetes in Burkina Faso population. Journal of Public Health in Africa, 11(1). https://doi.org/10.4081/jphia.2020.1233